AN ALMOST EVERYWHERE EXISTENCE THEOREM FOR SOLUTIONS OF VOLTERRA FUNCTIONAL EQUATIONS(1)

ву J. YEH

1. Introduction. Let C_w be the Wiener space, i.e., the collection of real valued functions x(t) defined and continuous on $I: 0 \le t \le 1$ and satisfying x(0) = 0.

Let a finite sequence of real valued continuous functions $F^1(t, u)$, $F^2(t, u, v_1)$, \cdots , $F^n(t, u, v_1, \cdots, v_{n-1})$ be defined and continuous for $t \in I$ and other variables unrestricted. The Volterra functionals $\Phi^k(x|t)$, $\Lambda^k(x|t)$ depending on the function $x(\cdot)$ and the real variable t are defined inductively by

(1)
$$\Lambda^0(x \mid t) = x(t), \qquad \text{on } C_w \otimes I,$$

(2)
$$\Phi^{k}(x \mid t) = F^{k}(t, \Lambda^{0}, \cdots, \Lambda^{k-1}), \qquad (k = 1, 2, \cdots, n) \text{ on } C_{w} \otimes I,$$

(3)
$$\Lambda^{k}(x \mid t) = \int_{0}^{t} \Phi^{k}(\tau) d\tau \qquad (k = 1, 2, \dots, n) \text{ on } C_{w} \otimes I.$$

For any $x \in C_w$, the function y defined by the Volterra functional equation

(4)
$$y(t) = x(t) + \Lambda^{n}(x \mid t)$$

or with $f = F^n$

(5)
$$y(t) = x(t) + \int_0^t f[s, \Lambda^0(x \mid s), \cdots, \Lambda^{n-1}(x \mid s)] ds$$

belongs to C_w . In [3] we showed that under certain conditions on F^k there exists uniquely $x \in C_w$ satisfying (5) for every given $y \in C_w$. In the present article we prove an almost everywhere existence theorem for solutions of (5) where the phrase almost everywhere refers to the Wiener measure defined on C_w . Our result is the following:

THEOREM. Let $F^1(t, u)$, $F^2(t, u, v_1)$, \cdots , $F^{n-1}(t, u, v_1, \cdots, v_{n-2})$, $f(t, u, v_1, \cdots, v_{n-1})$ be continuous and have continuous first derivatives with respect to u, v_1, \cdots, v_{n-1} on $I \otimes R_k$ $(k = 1, 2, \cdots, n)$ where R_k is the k-dimensional Euclidean space and let f_t be continuous on $I \otimes R_n$. Let $F^1, F^2, \cdots, F^{n-1}$,

Received by the editors August 21, 1961.

⁽¹⁾ The author is indebted to Professor R. H. Cameron for his advice in writing this paper.

f satisfy the order of growth conditions(2)

(6)
$$|F^k(t, u, v_1, \dots, v_{k-1})| \leq C \sum_{i=0}^{k-1} |v_i| \text{ on } I \otimes R_k (k=1, 2, \dots, n-1),$$

(7)
$$f(t, u, v_1, \dots, v_{n-1}) \operatorname{sgn} u \ge -A_1 \{Bu\}^2$$
 on $I \otimes R_n$,

(8)
$$f_u + 4g_t + 4\sum_{j=1}^{n-1} g_j F^j \leq 2\sum_{j=0}^{n-1} \alpha_j^2 v_j^2 + A_2$$
 on $I \otimes R_n$,

(9)
$$g(1, u, v_1, \dots, v_{n-1}) \ge -\frac{1}{2} \alpha(\cot \beta) u^2 - A_3$$
 on R_n ,

where

(10)
$$g(t, u, v_1, \dots, v_{n-1}) = \int_0^u f(t, u', v_1, \dots, v_{n-1}) du'$$
 on $I \otimes R_n$

(11)
$$\alpha = \left\{ \alpha_0^2 + \sum_{i=1}^{n-1} \left[C(1+C)^{i-1} \right]^2 \alpha_i^2 \right\}^{1/2}$$

and A_1 , A_2 , B, C, α_j $(j=0, 1, \dots, n-1)$, β are positive constants satisfying $\alpha < \beta < \pi$ and B < 1. Then corresponding to almost every $y \in C_w$, (5) has a solution $x \in C_w$ which is unique in C_w .

2. **Lemma.** Let each of $F^1(t, u)$, $F^2(t, u, v_1)$, \cdots be continuous and satisfy (6) on $I \otimes R_k$, $(k=1, 2, \cdots)$. Then for any $x \in C_w$ the Volterra functional $\Lambda^k(x|t)$, $(k=0, 1, 2, \cdots)$ defined by (1), (2), (3) satisfies

(12)
$$\Lambda^{k}(x \mid t) \leq C(1+C)^{k-1} \left\{ \int_{0}^{t} [x(s)]^{2} ds \right\}^{1/2}$$

for $t \in I$, $(k = 1, 2, \cdots)$.

Proof. The proof is based on Schwarz's inequality and a complete induction on k. For k=1, by (6) and Schwarz's inequality

$$|\Lambda^{1}(x|t)| \leq \int_{0}^{t} |F^{1}[s, x(s)]| ds$$

$$\leq C \int_{0}^{t} |x(s)| ds$$

$$\leq C \left\{ \int_{0}^{t} [x(s)]^{2} ds \right\}^{1/2} \qquad \text{for } t \in I.$$

Now suppose that (12) holds for $1 \le k \le N$. Then again by (6) and Schwarz's inequality

⁽²⁾ $v_0 = u$.

$$| \Lambda^{N+1}(x|t) | \leq \int_0^t |F^{N+1}[s, x(s), \Lambda^1(x|s), \cdots, \Lambda^N(x|s)] | ds$$

$$\leq C \int_0^t |x(s)| ds + C \sum_{j=1}^N \int_0^t |\Lambda^j(x|s)| ds$$

$$\leq C \left\{ \int_0^t [x(s)]^2 ds \right\}^{1/2}$$

$$+ C \sum_{j=1}^N \int_0^t C(1+C)^{j-1} \left\{ \int_0^s [x(r)]^2 dr \right\}^{1/2} ds$$

$$\leq C \left\{ 1 + C \sum_{j=1}^N (1+C)^{j-1} \right\} \left\{ \int_0^t [x(s)]^2 ds \right\}^{1/2}$$

$$= C(1+C)^N \left\{ \int_0^t [x(s)]^2 ds \right\}^{1/2}$$

and (12) holds for k = N + 1 as well. This completes the proof of (12) by induction.

3. Proof of the theorem. Let $\gamma = B^{-1} - 1 > 0$ and

(13)
$$\phi(t, u) = (t + \gamma)^{-1/2} \exp\{(t + \gamma)^{-1}u^2\} \quad \text{on } I \otimes R_1.$$

Since $t+\gamma>0$ on I, $\phi(t, u)$ has continuous derivatives of all orders with respect to t and u on $I\otimes R_1$. Define a function $G(t, u, v_1, \dots, v_{n-1}, \lambda)$ depending on a non-negative parameter λ by

(14)
$$G(t, u, v_1, \dots, v_{n-1} | \lambda) = g(t, u, v_1, \dots, v_{n-1}) + \lambda \phi(t, u)$$
on $I \otimes R_n, \lambda \geq 0$.

Then

(15)
$$G_t = g_t - \frac{1}{2} \lambda(t+\gamma)^{-1} \phi(t,u) - \lambda(t+\gamma)^{-2} u^2 \phi(t,u),$$
on $I \otimes R_n, \lambda \geq 0$,

(16)
$$G_u = f + 2\lambda(t+\gamma)^{-1}u\phi(t,u), \qquad \text{on } I \otimes R_n, \lambda \geq 0,$$

(17)
$$G_j = g_j, (j = 1, 2, \cdots, n-1) \quad \text{on } I \otimes R_n, \lambda \geq 0,$$

and these derivatives are all continuous. Furthermore G_u has continuous first derivatives with respect to t, u, v_1 , \cdots , v_{n-1} on $I \otimes R_n$ for $\lambda \ge 0$ and in particular G_{uu} is given by

(18)
$$G_{uu} = f_u + 2\lambda(t+\gamma)^{-1}\phi(t, u) + 4\lambda(t+\gamma)^{-2}u^2\phi(t, u)$$

so that by (15)

(19)
$$G_{uu} + 4G_t = f_u + 4g_t \qquad \text{on } I \otimes R_n \text{ for } \lambda \ge 0.$$

Now F^1 , F^2 , \cdots , F^{n-1} , G_u satisfy the conditions on F^1 , F^2 , \cdots , F^{n-1} , f of Theorem 1 of [2] so that the transformation

(20)
$$y(t) = x(t) + \int_0^t G_u[s, \Lambda^0(x \mid s), \dots, \Lambda^{n-1}(x \mid s) \mid \lambda] ds, \qquad \lambda \geq 0,$$

transforms C_w in a 1-1 manner into a measurable subset Γ with a measure given by (3)

(21)
$$m_w(\Gamma) = \int_{C_w} \exp\{J(x,\lambda)\} d_w x, \qquad \lambda \ge 0$$

where

(22)
$$J(x,\lambda) = \int_0^1 K[t, \Lambda^0(x \mid t), \dots, \Lambda^{n-1}(x \mid t) \mid \lambda] dt + 2G(0, 0, \dots, 0 \mid \lambda) - 2G[1, \Lambda^0(x \mid 1), \dots, \Lambda^{n-1}(x \mid 1) \mid \lambda]$$

for $x \in C_w$, $\lambda \ge 0$ with

(23)
$$K(t, u, v_1, \dots v_{n-1} | \lambda) = \frac{1}{2} G_{uu} + 2G_t - G_u^2 + 2 \sum_{j=1}^{n-1} G_j F^j$$

$$= \frac{1}{2} f_u + 2g_t - G_u^2 + 2 \sum_{j=1}^{n-1} g_j F^j, \quad \text{for } \lambda \ge 0$$

according to (19), (17).

We show next that for each positive value of λ the transformation (20) transforms C_w 1-1 onto itself. We only have to show that when $\lambda > 0$, G_u satisfies the condition (4.1) of Theorem II of [3]. From (16)

(24)
$$G_u \operatorname{sgn} u = f \operatorname{sgn} u + 2\lambda(t+\gamma)^{-1} |u| \phi(t,u)$$
 on $I \otimes R_n$ for $\lambda \geq 0$ and from (13) and $0 < t+\gamma \leq 1+\gamma$, $(t+\gamma)^{-1} \geq B$ for $t \in I$.

(25)
$$2\lambda(t+\gamma)^{-1} |u| \phi(t,u) = 2\lambda(t+\gamma)^{-3/2} |u| \exp\{(t+\gamma)^{-1}u^2\}$$

$$\geq 2\lambda B^{3/2} |u| \exp\{Bu^2\}, \quad \text{on } I \otimes R_1 \text{ for } \lambda \geq 0.$$

Now when $\lambda > 0$ and $|u| \ge \lambda^{-1} B^{-3/2} A_1$, (25) implies

(26)
$$2\lambda(t+\gamma)^{-1}|u|\phi(t,u) \ge 2A_1 \exp\{Bu^2\}$$
 on $I \otimes R_1$

so that according to (24), (7), (26)

$$(27) G_u \operatorname{sgn} u \ge A_1 \exp\{Bu^2\} \ge A_1$$

for $\lambda > 0$, $|u| \ge \lambda^{-1}B^{-3/2}A_1$, $(t, v_1, v_2, \dots, v_{n-1}) \in I \otimes R_{n-1}$. On the other hand when $\lambda > 0$ but $|u| \le A^{-1}B^{-3/2}A_1$,

⁽³⁾ See the first equation on p. 152 of [2].

$$f \operatorname{sgn} u \ge -A_1 \exp\{B\lambda^{-2}B^{-3}A_1^2\} = -A(\lambda)$$

according to (7) where by definition

$$A(\lambda) = A_1 \exp\{\lambda^{-2}B^{-2}A_1^2\} > 0$$

and hence by (24), (25)

(28)
$$G_u \operatorname{sgn} u \ge -A(\lambda)$$

for $\lambda > 0$, $|u| \leq \lambda^{-1} B^{-3/2} A_1$, $(t, v_1, v_2, \dots, v_{n-1}) \in I \otimes R_{n-1}$. Summarizing (27), (28) we obtain

(29)
$$G_u \operatorname{sgn} u \ge -A(\lambda)$$
 on $I \otimes R_n$ with $A(\lambda) > 0$ for $\lambda > 0$.

Thus for each $\lambda > 0$, G_u satisfies (4.1) of [3] and according to Theorem II of [3] the transformation (20) transforms C_w 1-1 onto itself. From (21) we have

(30)
$$1 = \int_{C_w} \exp\{J(x,\lambda)\} d_w x \qquad \text{for } \lambda > 0.$$

Now since $G_u(t, u, v_1, \dots, v_{n-1}|0) = f(t, u, v_1, \dots, v_{n-1})$ according to (16), we only have to show that (30) holds even when $\lambda = 0$ in order to complete the proof of the theorem. We show

(31)
$$\lim_{\lambda \downarrow 0} \int_{C_w} \exp\{J(x,\lambda)\} d_w x = \int_{C_w} \exp\{J(x,0)\} d_w x.$$

This is done in what follows by interchanging the order of integration and limiting process.

According to (22), (14), for each $x \in C_w$

(32)
$$\lim_{\lambda \downarrow 0} J(x, \lambda) = \lim_{\lambda \downarrow 0} \left\{ \int_0^1 K[t, \Lambda^0(x \mid t), \dots, \Lambda^{n-1}(x \mid t) \mid \lambda] dt \right\} - 2g(0, 0, \dots, 0) - 2g[1, \Lambda^0(x \mid 1), \dots, \Lambda^{n-1}(x \mid 1)].$$

To pass to the limit under the integral sign in (32) we show that for each fixed $x \in C_w$, K is bounded on I for $0 < \lambda \le 1$. From (23), (16), (13)

(33)
$$K[t, \Lambda^{0}(x \mid t), \dots, \Lambda^{n-1}(x \mid t) \mid \lambda] = \frac{1}{2} f_{u}[t, \Lambda^{0}(x \mid t), \dots, \Lambda^{n-1}(x \mid t)] + 2g_{t}[t, \Lambda^{0}(x \mid t), \dots, \Lambda^{n-1}(x \mid t)] - \{f[t, \Lambda^{0}(x \mid t), \dots, \Lambda^{n-1}(x \mid t)] + 2\lambda(t + \gamma)^{-3/2}\Lambda^{0}(x \mid t) - \exp\{(t + \gamma)^{-1}[\Lambda^{0}(x \mid t)]^{2}\}\}^{2} + 2\sum_{j=1}^{n-1} g_{j}[t, \Lambda^{0}(x \mid t), \dots, \Lambda^{n-1}(x \mid t)]F^{j}[t, \Lambda^{0}(x \mid t), \dots, \Lambda^{n-1}(x \mid t)]$$
 for $t \in I, \lambda \geq 0$.

From the continuity of F^1 , F^2 , \cdots , F^{n-1} , f, f_u , g_t , g_j $(j=1, 2, \cdots, n-1)$ it is evident that K is bounded on I for $0 < \lambda \le 1$ for each $x \in C_w$. Also from (23), (16)

$$\lim_{\lambda \downarrow 0} K(t, u, v_1, \dots, v_{n-1} | \lambda) = \frac{1}{2} f_u + 2g_t - f^2 + 2 \sum_{j=1}^{n-1} g_j F^j$$

$$= K(t, u, v_1, \dots, v_{n-1} | 0)$$

and from (32), (22), (14)

(34)
$$\lim_{\lambda \downarrow 0} J(x, \lambda) = \int_0^1 K[t, \Lambda^0(x \mid t), \dots, \Lambda^{n-1}(x \mid t) \mid 0] dt - 2g(0, 0, \dots, 0) - 2g[1, \Lambda^0(x \mid 1), \dots, \Lambda^{n-1}(x \mid 1)] = J(x, 0).$$

We next justify

(35)
$$\lim_{\lambda \downarrow 0} \int_{C_{w}} \exp\{J(x, \lambda)\} d_{w}x = \int_{C_{w}} \lim_{\lambda \downarrow 0} \exp\{J(x, \lambda)\} d_{w}x$$

by dominating $\exp\{J(x,\lambda)\}$ on C_w for all $\lambda>0$ by a function which is independent of λ and integrable on C_w . From (22), (23), (14), (13)

$$J(x,\lambda) \leq \int_{0}^{1} \left\{ \frac{1}{2} f_{u}[t, \Lambda^{0}, \dots, \Lambda^{n-1}] + 2g_{t}[t, \Lambda^{0}, \dots, \Lambda^{n-1}] \right\} dt$$

$$+ 2 \sum_{j=1}^{n-1} g_{j}[t, \Lambda^{0}, \dots, \Lambda^{n-1}] F^{j}[t, \Lambda^{0}, \dots, \Lambda^{j-1}] dt$$

$$- \int_{0}^{1} \left\{ G_{u}[t, \Lambda^{0}, \dots, \Lambda^{n-1} | \lambda] \right\}^{2} dt$$

$$+ 2 \left\{ g(0, 0, \dots, 0) + \lambda \gamma^{-1/2} \right\}$$

$$- 2 \left\{ g[1, \Lambda^{0}(1), \dots, \Lambda^{n-1}(1)] + \lambda B^{1/2} \exp \left\{ B[\Lambda^{0}(1)]^{2} \right\} \right\}.$$

The second integral in the right-hand side is non-negative. Also $g(0, 0, \dots, 0) = 0$ by (10), and $\lambda B^{1/2} \exp\{B[\Lambda^0(1)]^2\} > 0$. Therefore when $1 > \lambda > 0$

$$J(x,\lambda) \leq \int_{0}^{1} \left\{ \frac{1}{2} f_{u}[t,\Lambda^{0},\dots,\Lambda^{n-1}] + 2g_{t}[t,\Lambda^{0},\dots,\Lambda^{n-1}] + 2 \sum_{j=1}^{n-1} g_{j}[t,\Lambda^{0},\dots,\Lambda^{n-1}] F^{j}[t,\Lambda^{0},\dots,\Lambda^{j-1}] \right\} dt$$

$$-2g[1,\Lambda^{0}(1),\dots,\Lambda^{n-1}(1)] + 2\gamma^{-1/2} \qquad \text{for all } x \in C_{w}.$$

The right-hand side of (36) is independent of λ . By (8), (9), Lemma, (11)

$$J(x,\lambda) \leq \int_{0}^{1} \left\{ \sum_{j=0}^{n-1} \alpha_{j}^{2} \left[\Lambda^{j}(x \mid t) \right]^{2} + \frac{A_{2}}{2} \right\} dt + \alpha \cot \beta \left[\Lambda^{0}(x \mid 1) \right]^{2} + 2A_{3} + 2\gamma^{-1/2}$$

$$\leq \alpha_{0}^{2} \int_{0}^{1} \left[x(t) \right]^{2} dt + \int_{0}^{1} \sum_{j=1}^{n-1} \alpha_{j}^{2} \left[C(1 + C)^{j-1} \right]^{2} \left\{ \int_{0}^{t} \left[x(s) \right]^{2} ds \right\} dt$$

$$+ \frac{A_{2}}{2} + \alpha \cot \beta \left[x(1) \right]^{2} + 2A_{3} + 2\gamma^{-1/2}$$

$$\leq \alpha^{2} \left\{ \int_{0}^{1} \left[x(t) \right]^{2} dt \right\} + \frac{A_{2}}{2} + \alpha \cot \beta \left[x(1) \right]^{2} + 2A_{3} + 2\gamma^{-1/2}$$

and

(37)
$$\exp\{J(x,\lambda)\} \le \exp\left\{\alpha^2 \int_0^1 [x(t)]^2 dt + \alpha \cot \beta [x(1)]^2\right\} \\ \cdot \exp\left\{\frac{A_2}{2} + 2A_3 + 2\gamma^{-1/2}\right\}.$$

According to §2 of [1], the right-hand side of (37) is integrable on C_w . Thus (35) is valid, (31) is valid by (34) and (30) holds for $\lambda = 0$, which means that for almost every $y \in C_w$, (5) has a solution $x \in C_w$. Its uniqueness follows from Remark 1, §2 of [3].

4. An example. We give an example with n=2 to which the present almost everywhere existence theorem is applicable but not the everywhere existence theorem, Theorem II of [3]. Let

$$F^{1}(t, u) = \sin u,$$

$$f(t, u, v) = \frac{1}{10} (u^{2} \sin 2u + 2u \sin^{2} u) \sin^{2} v.$$

Then

$$f_u(t, u, v) = \frac{1}{10} (2u^2 \cos 2u + 4u \sin 2u + 2 \sin^2 u) \sin^2 v,$$

$$g(t, u, v) = \frac{1}{10} u^2 \sin^2 u \sin^2 v,$$

$$g_t = 0, g_v F^1 = \frac{1}{10} u^2 \sin^3 u \sin 2v,$$

so that

$$|F^{1}(t, u)| \leq |u|,$$

$$|f(t, u, v)| \leq \frac{1}{10}(u^{2} + 2|u|) \leq \exp\left\{\frac{1}{2}u^{2}\right\},$$

$$f_{u} + 4g_{t} + 4g_{v}F^{1}$$

$$\leq \frac{1}{10}(2u^{2} + 4|u| + 2) + \frac{4}{10}u^{2} \leq \frac{1}{10}(6u^{2} + 6) + \frac{4}{10}u^{2} = u^{2} + 1,$$

$$g(1, u, v) \geq 0,$$

and the conditions in the theorem are satisfied with $A_1=A_2=1$, $A_3>0$, B=1/2, $C\geq 1$, $\alpha_0=1$, $\alpha_1=0$, $\alpha_0=1<\beta<\pi$. On the other hand (4.1) of [3] is violated.

BIBLIOGRAPHY

- 1. R. H. Cameron, Differential equations involving a parametric function, Proc. Amer. Math. Soc. 8 (1957), 834-840.
- 2. ——, Nonlinear Volterra functional equations and linear parabolic differential systems, J. Analyse Math. 5 (1956/1957), 136-182.
- 3. J. Yeh, Nonlinear Volterra functional equations and linear parabolic differential systems, Trans. Amer. Math. Soc. 95 (1960), 408-432.

University of Rochester, Rochester, New York